DUNE Near Detector Overview Sanjib R. Mishra NDWG 24, September, 2015 #### Goals of the DUNE Near-Detector - (A) Constrain the systematic uncertainties in the Oscillation Measurements/Searches - \Rightarrow Neutrino Source: ν_{μ} , ν_{e} , anti- ν_{μ} , anti- ν_{e} in - "PMNS-Oscillation $\Rightarrow 0.5 \le E_{\nu} \le 10 \text{ GeV}$ " & "Control & New-Physics $\Rightarrow 10 \le E_{\nu} \le 50 \text{ GeV}$ " regions - ⇒ Neutrino and Antineutrino Energy-Scale / Topologies - \Rightarrow Characterize Signal & Backgrounds to the oscillation signals: π^0/π^+ - (B) A generational advance in the Precision Neutrino Physics - ⇒ Cross-sections: QE, Resonance, Coherent-Meson, DIS, Neutral Currents, ... - ⇒ Neutrino-Nucleus (Ar) interactions & Nucleon Structure - ⇒ Electroweak and Isospin Physics - (6) Search for New Physics - ⇒ Heavy neutrinos, including `Light Dark-Matter' search - ⇒ Large Delta-m**2 oscillation - \Rightarrow ... # The ND Requirement document *ND Reg. (Glo-Sci-41) \Rightarrow ND measurements shall be of sufficient precision that when extrapolated to predict the FD event spectra without oscillations, the associated systematic error must be significantly less than the FD statistical error over the lifetime of the experiment. - * \mathcal{ND} - \mathcal{R} eq. (Glo-Sci-51 \mathcal{Z} 23) \Rightarrow ND shall measure $\mathcal{V}\mu$, $\overline{\mathcal{V}}\mu$, \mathcal{V} e $\oplus \overline{\mathcal{V}}$ e events - *ND-Reg. (Glo-Sci-51 & 23) \Rightarrow ND shall measure absolute & relative (FD/ND) flux - * \mathcal{ND} - \mathcal{R} eq. (Glo- \mathcal{S} ci- \mathcal{S} 4) \Rightarrow ND shall measure ν -Ar interactions - * \mathcal{ND} - \mathcal{R} eq (Glo-Sci-53) \Rightarrow ND shall measure rates, kinematics, and topologies of various processes (QE, Res, DIS, ...) - * \mathcal{ND} - \mathcal{R} eq (Glo-Sci-52) \Rightarrow ND shall measure NC & CC cross-sections as a function of visible-energy - * \mathcal{ND} - \mathcal{R} eq (Glo-Sci-24) \Rightarrow ND shall measure backgrounds to Oscl.-signal ## Three Near Detector Options: - (I) Fine Grained Tracker (FGT): Reference detector for CDR, and the Independent design (May/15), Director's (Jun/15) & CD1 (Jul/15) Reviews - ⇒ STT R&D (Talk by Vipin/Arvinder) - ⇒ ECAL R&D (Talk by Bipul) - ⇒ Optimization: Nuclear Targets (Ar, Ca, C, etc.) (Talk by Roberto) - (2) Liquid Argon (LAr) Option: Augment the FGT design (TBD; Martin/Antonio @ next meeting) - (3) High Pressure Ar-Gas (HP-ArGas) Option: (Talk by George) - \Rightarrow Detector-Physics Group: A very large overlap with the ND-Physics Group ## Minimal set of Questions for any given ND-Option - (1) Sensitivity (precision) to the absolute flux measurement of $\nu_{\mu} \leftarrow \nu$ -Source - (2) * Precision on the un-oscillated Relative-Flux, $FD/ND(E\nu)$, for $\nu\mu$, $\nu\mu \leftarrow \nu$ -Source - (3) Precision on the predicted ν_e/ν_μ (ν_e/ν_μ) at the FD \Leftarrow Signal Efficiency and Purity of π^0 from NC .&. $CC \Leftarrow$ Background - (4) * Efficiency and Purity for v_e -CC (v_e -CC) \Leftarrow Interaction model - (5) * Efficiency and Purity for ν_{μ} -induced QE and Resonance (Δ^{++}) \Leftarrow Interaction model - (6) * Error on the energy-scale of Neutrino & Anti-Neutrino \Leftarrow Interaction model \Leftrightarrow in situ constraints on the initial and final state interactions in Ar - $ND \gg FD$: Quantify how to 'translate' ND-measurements to FD: